

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Department: COMPUTER SCIENCE AND ENGINEERING Giani Zail Singh Campus College of Engineering & Technology, MRSPTU

Program: M Tech Computer Science and Engineering

Subject	S Code	Semester	Credit	Duration (Hrs)	LTP	SOO	Statement	10d	20d	£Od	P04	PO5	90d	P07	PO8	PSO1	PSO2
JTER		1	3	38		C01	To understand the basic notions of discrete and continuous probability.	3									
N OF COMPL	.01					CO2	To understand the methods of statistical inference, and the role that sampling distributions play in those methods		1					1		1	
AL FOUNDATIO	MCSCE1-1				300	CO3	To be able to perform correct and meaningful statistical analyses of simple to moderate complexity.			3			2				
MATHEMATIC. SCIENCE						CO4	Applications of Mathematics in various fields of Computer science and engineering.				3	1			1		1

COURSE ARTICULATION MATRIX (STUDY SCHEME: 2018)

ADVANCED DATA STRUCTURES	MCSCE1-102	1	3	28	300	01 C04 C03 C02 C01	Understand the implementation of symbol table using hashing techniques Develop and analyze algorithms for red-black trees, B-trees and Splay trees. Develop algorithms for text processing applications. Identify suitable data structures and develop algorithms for computational geometry problems Understand research problem formulation, analyze research	3	3	3	2	2	2		1 3 3 3		1 1 2
MCSCE 3 C	3 8	30	30	30		CO4 CO3	Develop algorithms for text processing applications. Identify suitable data structures and develop algorithms for computational geometry problems	3			1				3		_
		1	2	28		C01	Understand research problem formulation, analyze research related information, Follow research ethics		3				2		3		
						C02	Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.	3		3		2			1	1	
MRMIP0-101					200	CO3	Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.		3		2		3	3	1	2	_
						CO4	Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.		3	2	2				3	1	
NCEU	MCS	1	2	60	004	C01	To implement Binary search tree and AVL trees	3		1						3	

						C02	To implement insertion and deletion in AVL trees.	3		1						3
						CO3	To implement Red-Black Trees and various operations in m-way search trees.	3		2						3
						CO4	To implement various algorithms.	3		2						3
		1	3	38		C01	Extract features that can be used for a particular machine learning approach in various IOT applications	3		1						3
NE LEARNING	SCE1-156				300	C02	To compare pros and cons of various machine learning techniques and to get an insight of when to apply a particular machine learning approach.							1	1	2
MACHI	MC					CO3	To mathematically analyze various machine learning approaches and paradigms.	1	2				2		2	3
						CO4	To learn various trends of machine learning techniques.	1		3		1				1
		1	3	38		C01	Describe and explain radio standards and communication protocols for wireless sensor networks			3	1		1		3	
TWORKS	1-157				0	C02	Explain the function of the node architecture and use of sensors for various applications.	3	1	3						1
SS SENSOR NE	MCSCE				3 0	CO3	Be familiar with architectures, functions and performance of wireless sensor networks systems and platforms.		1	3	2					2
WIRELE!						CO4	To understand various security issues.	3	1		2				3	
INTROD UCTION	MCSCE1-	1	3	38	300	C01	Able to demonstrate knowledge of the fundamental principles of intelligent systems and would be able to analyses and compare the	3		1					1	

							relative merits of a variety of AI problem solving techniques.									
						C02	To understand the basic concepts of Basic concepts of graph and tree search	1		3						3
						CO3	To learn knowledge representation.						2			1
						CO4	To learn recent trends in Fuzzy logic, Knowledge Representation.	2								2
		1	3	38		C01	Explain how data is collected, managed, and stored for data science.	1		3			1		1	
SCIENCE	CE1-159				0 0	C02	Understand the key concepts in data science, including their real- world applications and the toolkit used by data scientists	3		3		2			2	1
DATA	MCS(e	CO3	Implement data collection and management scripts using MongoDB	2		3					1	2
						CO4	To learn applications of data science.	3			2				3	1
٨S		1	ω	38		C01	Design trends in distributed systems.	1		2					1	
D SYSTEN	1-160				0	C02	To learn distributed databases.					1	1	2		
TRIBUTE	MCSCE				3 C	CO3	To understand the concept of distributed query optimization.		1						1	
DIS						C04	To understand the concept of parallel databases.	2		3	1	1			3	2
ADVANCED WIRELESS AND	MCSCE1-161	1	3	38	300	C01	Demonstrate advanced knowledge of networking and wireless networking and understand various types of wireless networks, standards, operations and use cases.	2		3			2		1	2

						C02	Be able to design WLAN, WPAN, WWAN, Cellular based upon underlying propagation and performance analysis.	2		3		1				1
						CO3	Demonstrate knowledge of protocols used in wireless networks and learn simulating wireless networks	2	1		1		1		3	
						CO4	Design wireless networks exploring trade-offs between wire line and wireless links	3		3		2				1
AB.		1	2	60		C01	To implement supervised machine learning (regression) algorithms.		3		2				1	
ARNING L	1-162) 4	C02	To implement supervised machine learning (classification) algorithms.	3			2				3	
CHINE LE	MCSCE				00	CO3	To implement unsupervised machine learning algorithms.	3		3			2		1	
MAC						CO4	To implement dimensionality reduction and PCA.			3		1				
ORKS		1	2	60		C01	To learn Introduction to Network Simulators	1	3				2		1	
OR NETW B.	:1-163				14	C02	To learn TCL Scripting and trace file formats of network simulators.	1		3		1			1	
ESS SENS	MCSCE				0 0	CO3	Create different simulation scenarios by varying MAC protocols.	3			1		1		3	
WIREL						CO4	To implement and compare various routing protocols	1		3		2				1
N TO STEMS	64	1	2	60		C01	To implement simple artificial neural network and neural network with back propagation.	1		3			2		1	
DDUCTIO	CSCE1-1(004	C02	To implement recurrent neural network and fuzzy neural network.		1			1				1
INTRG	M					CO3	To implement iterative deepening search and Hill Climbing Algorithm.	1	2	3			1		1	

						C04	Implementation of optimization genetic algorithm	1		3		2				1
		1	2	60		C01	To learn basics of R	1	2	3			1		3	
NCE LAB	1-165				4	C02	To learn basic Statistics and Visualization	2		3		2				1
ATA SCIE	MCSCE				0 0	CO3	To learn K-Means Clustering and association rules.	1	1	3						2
Ď						C04	To learn linear regression and implement other classifiers.	1	2	1						1
LAB.		1	2	60		C01	To install database packages.	1								
SYSTEMS	1-166				4	C02	To create and manage database objects and security.		1						2	
IBUTED S	MCSCE				0 0	CO3	Implement Partitioning on the database tables.	2		2						2
DISTR						CO4	Implement various Transaction concurrency control methods.	2			1	1				1
AND AB.		1	2	60		C01	Setup & Configuration of Wireless Access Point (AP)		3				2		1	
IRELESS . NORKS L	1-167				4	C02	Study of WLAN, Bluetooth Protocol and Applications	1	2	3		1				2
NCED W	MCSCE				0 0	CO3	To study GSM modem and SMS client-server application	1	1	3			1			2
ADVA MOE						CO4	To Implement J2ME Program for Mobile Node Discovery	1		3		2			2	1
CED	1-204	3	2	45	0	C01	Analyzethecomplexity/performanceofdifferent algorithms.	3	3				2			
ADVANC	MCSCE				3 0	C02	Determine the appropriate data structure for solving a particular set of problems.	1								

						03	Categorize the different problems					1			
						Ŭ	their complexity								
						CO4	Students should have an insight of recent activities in the field of the advanced data structure.	3			2		3		1
		2	S	45		CO1	Identify and describe soft computing techniques and their roles in building intelligent machines	3				2		1	3
IJ	CE1-205				0 0 0	C02	Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering problems.	3		3	2		1	2	
OMPUTIN	MCS				ε	E03	Apply genetic algorithms to combinatorial optimization problems.	3	1		1				
SOFT CO						CO4	Evaluate and compare solutions by various soft computing approaches for a given problem.	3			2			2	3
LAB.		2	2	60		CO1	To implement Dijkstra's algorithm	3	3	1		2		1	
RITHMS	1-268				4	C02	To implement Floyd-Warshall algorithm	2							2
CED ALGC	MCSCE				0 0	CO3	To find inverse of a triangular matrix using divide and conquer strategy.	3				1			2
ADVANO						CO4	To convert base (decimal/hexa) representation to modulo representation.				2		3		1
		2	2	60		C01	To implement string and array operations in Python	3	3			2			
ING LAB	E1-269				0 4	C02	To study neural network toolbox	3			2		3		1
COMPUT	MCSC				0	CO3	To study fuzzy logic toolbox		1		1				
SOFT						C04	To perform operations on fuzzy sets.	3			2				1

Ilysis		2	3	45		C01	Able to extract the data for performing the Analysis.	3	1	3	1					1	
and Ana ר						C02	Able to clean data like inserting missing values.	2		2	1					1	
eparatior	1-270					CO3	To do exploratory analysis	2		3	1						2
Data Pr	MCSCE				300	CO4	To apply visualization techniques.	2	1	3	1				1		1
SN TING		2	3	45		C01	Differentiate between various software vulnerabilities		2						3		1
RE DESIG						C02	Software process vulnerabilities for an organization	2		1			1			1	
SOFTW# TERPRISE	1-271					CO3	Monitor resources consumption in a software.				3			1			1
SECURE AND EN	MCSCE				300	CO4	Interrelate security and software development process	2		2		1				1	
		2	3	45		C01	Developed the practical skills necessary to build computer vision applications.		3				2				1
NO						C02	To have gained exposure to object and scene recognition and categorization from images.					2					
JTER VISI	1-272					CO3	To extract features from data.		1								1
COMPL	MCSCE				300	C04	To perform pattern analysis.	3								1	
HUMAN AND	MCSCE1-	2	3	45	300	C01	Understand the structure of models and theories of human computer interaction and vision.		3				2				1

						:02	Design an interactive web interface on the basis of	1		2				
						0	models studied.							
						CO3	To study Mobile Ecosystem.		1					1
						CO4	To Study designing Web Interfaces.						1	
		2	3	45		C01	Understand the structure of models and theories of human computer interaction and vision.		3		2			1
BNI						C02	Design an interactive web interface on the basis of models studied.	1		2				
LUAMO	1-274					CO3	To study Mobile Ecosystem.		1					1
GPU C	MCSCE				300	CO4	To Study designing Web Interfaces.						1	
S		3	3	45		C01	Identify the target platform and users and be able to define and sketch a mobile application		3		2			1
ION AND SERVICE						C02	Understand the fundamentals, frameworks, and development lifecycle of mobile application platforms including iOS, Android, and PhoneGap	1		2				
E APPLICAT	1-382					CO3	Design and develop a mobile application prototype in one of the platform (challenge project)		1					1
MOBIL	MCSCE				300	C04	To Study recent trends.						1	

		3	3	45		C01	Familiar with the structure of compiler		3						1
R HPC						C02	Parallel loops, data dependency and exception handling and debugging in compiler.	1			2				
ILER FO	1-274					£03	To study concurrency analysis								1
сомр	MCSCE				300	CO4	To Study recent trends.	3				2		1	
		3	3	45		C01	Formulate optimization problems.		2						1
CHNIQUES						C02	Understand and apply the concept of optimality criteria for various types of optimization problems.	1			1				
IZATION TE	l-384					£03	Solve various constrained and unconstrained problems in Single variable as well as multivariable.								1
OPTIM	MCSCE:				3 0 0	CO4	Apply the methods of optimization in real life situation.	2				2		1	
		2	2	60		Co1	Implement efficient algorithms for common application kernels, such as matrix multiplication				1				1
omputing Lab	31-280					C02	Given a problem, implement an efficient and correct code to solve it, analyze its performance, and give convincing written and oral presentations explaining the achievements.					1		1	
GPU C	MCSCI				004	CO3	Describe common GPU architectures and programming models.			1					

						CO4	Define terminology commonly used in parallel computing, such as efficiency and speedup.	1							
		2	2	60		Co4	Apply a solid foundational grounding in computer networks, operating systems, file systems, hardware, and mobile devices to digital investigations and to the protection of computer network resources from unauthorized activity	2		1					
						Co3	Identify and document potential security breaches of computer data that suggest violations of legal, ethical, moral, policy, and/or societal standards		1					2	
ab						Co2	Cite and adhere to the highest professional and ethical standards of conduct, including impartiality and the protection of personal privacy				1				1
Digital Forensics I	MCSCE1-281				004	Co1	conduct digital investigations that conform to accepted professional standards and are based on the investigative process: identification, preservation, examination, analysis, and reporting						1		
action Lab		2	2	4		Co4	Demonstrate skills to collaborate in a team for justifying identified problems and to write interface related reports as per the standards.				1				
iter Inter-	CE1-279				004	Co3	Evaluate user interfaces using Heuristic Evaluation and Thinking aloud Test.					1		1	
d Compu	MCS					Co2	Design user interfaces according to the standards		1						
Human an						Co1	Analyze and identify usability issues in User interfaces	1							1

		2	3	45		Co1	Understand relevant legislation and codes of ethics	1				3	1			2
	E1-275				00	Co2	Computer forensics and digital detective and various processes, policies and procedures	1	1	3					1	
ORENSICS	MCSO					Co3	E-discovery, guidelines and standards, E-evidence, tools and environment	1	3		1			3		1
DIGITAL F						Co4	Email and web forensics and network forensics.	1	3			1				1
		2	2	60		Co1	Learn pre-processing method for multi-dimensional data	3	3	1	1				1	
ON AND	1-276				4	Co2	Practice on data cleaning mechanisms	2	3	1	1				1	
REPARATI LAB	MCSCE				00	Co3	Learn various data exploratory analysis	2	3	1	1					2
DATA PF ANLYSIS						Co4	Develop the visualizations for clusters or partitions	2	3	1	1					1
esign & ing Lab	7	2	2	60	004	Co1	Learn various authentication methods	1	3		1				1	
oftware D6 e Computi	ICSCE1-27					Co2	Practice on debugging.	1	3	1	1				1	
Secure So Enterpris	Σ					Co3	Set up their own Private cloud storage	1	3		1					2

		Learn Rhapsody Tool.	1	3	1			2
	Co4							